The putative "switch 2" domain of the Ras-related GTPase, Rab1B, plays an essential role in the interaction with Rab escort protein.
نویسندگان
چکیده
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the alpha2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative alpha2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the alpha3 and alpha4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B alpha2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B alpha2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the alpha2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.
منابع مشابه
Membrane targeting of a Rab GTPase that fails to associate with Rab escort protein (REP) or guanine nucleotide dissociation inhibitor (GDI).
The targeting of various Rab proteins to different subcellular compartments appears to be determined by variable amino acid sequences located upstream from geranylgeranylated cysteine residues in the C-terminal tail. All nascent Rab proteins are prenylated by geranylgeranyltransferase II, which recognizes the Rab substrate only when it is bound to Rab escort protein (REP). After prenylation, RE...
متن کاملRab11 in Disease Progression
Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...
متن کاملBinding of the vesicle docking protein p115 to the GTPase Rab1b regulates membrane recruitment of the COPI vesicle coat
Membrane recruitment of the COPI vesicle coat is fundamental to its function and contributes to compartment identity in the early secretory pathway. COPI recruitment is triggered by guanine nucleotide exchange activating the Arf1 GTPase, but the key exchange factor, GBF1, is a peripheral membrane component whose membrane association is dependent on another GTPase, Rab1. Inactive Rab GTPases are...
متن کاملRab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture
Rab1b belongs to the Rab-GTPase family that regulates membrane trafficking and signal transduction systems able to control diverse cellular activities, including gene expression. Rab1b is essential for endoplasmic reticulum-Golgi transport. Although it is ubiquitously expressed, its mRNA levels vary among different tissues. This work aims to characterize the role of the high Rab1b levels detect...
متن کاملP-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 9 1 شماره
صفحات -
تاریخ انتشار 1998